Important: Use custom search function to get better results from our thousands of pages

Use " " for compulsory search eg:"electronics seminar" , use -" " for filter something eg: "electronics seminar" -"/tag/" (used for exclude results from tag pages)
Ask More Info Of  A Seminar Ask More Info Of A Project Post Reply  Follow us on Twitter
30-04-2011, 02:56 PM
Post: #1
RFID BASED ATTENDANCE CUM SECURITY SYSTEM

.doc  RFID based Attandance cum Security System.doc (Size: 1.79 MB / Downloads: 624)
INTRODUCTION
Our final year project is RFID based Attendance cum Security System. This idea came to my mind when I saw our lecturers taking the attendance of 100s of students very hardly. We thought we can integrate the RFID based Security System with attendance system as well. That what our final year project is doing.
BLOCK DIAGRAM OF THE PROJECT:
History of RFID:
In a very interesting article, the San Jose Mercury News tells us about Charles Walton, the man behind the radio frequency identification technology (RFID). Since his first patent about it in 1973, Walton, now 83 years old, collected about $3 million from royalties coming from his patents. Unfortunately for him, his latest patent about RFID expired in the mid-1990s. So he will not make any money from the billions of RFID tags that will appear in the years to come. But he continues to invent and his latest patent about a proximity card with incorporated PIN code protection was granted in June 2004.
What is RFID.
RFID is short for Radio Frequency Identification. Generally a RFID system consists of 2 parts. A Reader, and one or more Transponders, also known as Tags. RFID systems evolved from barcode labels as a means to automatically identify and track products and people. You will be generally familiar with RFID
systems as seen in:
• Access Control.
RFID Readers placed at entrances that require a person to pass their proximity card (RF tag) to be
"read' before the access can be made.
• Contact less Payment Systems.
RFID tags used to carry payment information. RFIDs are particular suited to electronic Toll collection
systems. Tags attached to vehicles, or carried by people transmit payment information to a fixed
reader attached to a Toll station. Payments are then routinely deducted from a users account, or
information is changed directly on the RFID tag.
• Product Tracking and Inventory Control. RFID systems are commonly used to track and record the
movement of ordinary items such as library books, clothes, factory pallets, electrical goods and numerous
items.
•How do RFIDs work.
Shown below is a typical RFID system. In every RFID system the transponder Tags contain information. This information can be as little as a single binary bit , or be a large array of bits representing such things as an identity code, personal medical information, or literally any type of information that can be stored in digital binary format.
Shown is a RFID transceiver that communicates with a passive Tag. Passive tags have no power source of
their own and instead derive power from the incident electromagnetic field. Commonly the heart of each tag
is a microchip. When the Tag enters the generated RF field it is able to draw enough power from the field to
access its internal memory and transmit its stored information.
When the transponder Tag draws power in this way the resultant interaction of the RF fields causes the voltage
at the transceiver antenna to drop in value. This effect is utilized by the Tag to communicate its information to
the reader. The Tag is able to control the amount of power drawn from the field and by doing so it can modulate
the voltage sensed at the Transceiver according to the bit pattern it wishes to transmit.
COMPONENTS OF RFID
A basic RFID system consist of three components:
• An antenna or coil
• A transceiver (with decoder)
• A transponder (RF tag) electronically programmed with unique information
These are described below:
1. ANTENNA
The antenna emits radio signals to activate the tag and read and write data to it. Antennas are the conduits between the tag and the transceiver, which controls the system's data acquisition and communication. Antennas are available in a variety of shapes and sizes; they can be built into a door frame to receive tag data from persons or things passing through the door, or mounted on an interstate tollbooth to monitor traffic passing by on a freeway. The electromagnetic field produced by an antenna can be constantly present when multiple tags are expected continually. If constant interrogation is not required, a sensor device can activate the field.
Often the antenna is packaged with the transceiver and decoder to become a reader (a.k.a. interrogator), which can be configured either as a handheld or a fixed-mount device. The reader emits radio waves in ranges of anywhere from one inch to 100 feet or more, depending upon its power output and the radio frequency used. When an RFID tag passes through the electromagnetic zone, it detects the reader's activation signal. The reader decodes the data encoded in the tag's integrated circuit (silicon chip) and the data is passed to the host computer for processing.
2. TAGS (Transponders)
An RFID tag is comprised of a microchip containing identifying information and an antenna that transmits this data wirelessly to a reader. At its most basic, the chip will contain a serialized identifier, or license plate number, that uniquely identifies that item,
similar to the way many bar codes are used today. A key difference, however is that RFID tags have a higher data capacity than their bar code counterparts. This increases the options for the type of information that can be encoded on the tag, including the manufacturer, batch or lot number, weight, ownership, destination and history (such as the temperature range to which an item has been exposed). In fact, an unlimited list of other types of information can be stored on RFID tags, depending on application needs. An RFID tag can be placed on individual items, cases or pallets for identification purposes, as well as on fixed assets such as trailers, containers, totes, etc.
Tags come in a variety of types, with a variety of capabilities. Key variables include:
"Read-only" versus "read-write"
There are three options in terms of how data can be encoded on tags: (1) Read-only tags contain data such as a serialized tracking number, which is pre-written onto them by the tag manufacturer or distributor. These are generally the least expensive tags because they cannot have any additional information included as they move throughout the supply chain. Any updates to that information would have to be maintained in the application software that tracks SKU movement and activity. (2) "Write once" tags enable a user to write data to the tag one time in production or distribution processes. Again, this may include a serial number, but perhaps other data such as a lot or batch number. (3) Full "read-write" tags allow new data to be written to the tag as needed—and even written over the original data. Examples for the latter capability might include the time and date
of ownership transfer or updating the repair history of a fixed asset. While these are the most costly of the three tag types and are not practical for tracking inexpensive items, future standards for electronic product codes (EPC) appear to be headed in this direction.
RFID TAGS
Data capacity

The amount of data storage on a tag can vary, ranging from 16 bits on the low end to as much as several thousand bits on the high end. Of course, the greater the storage capacity, the higher the price per tag.
Form factor
The tag and antenna structure can come in a variety of physical form factors and can either be self-contained or embedded as part of a traditional label structure (i.e., the tag is inside what looks like a regular bar code label—this is termed a 'Smart Label') companies must choose the appropriate form factors for the tag very carefully and should expect to use multiple form factors to suit the tagging needs of different physical products and units of measure. For example, a pallet may have an RFID tag fitted only to an area of protected placement on the pallet itself. On the other hand, cartons on the pallet have RFID tags inside bar code labels that also provide operators human-readable information and a back-up should the tag fail or pass through non RFID-capable supply chain links.
Passive versus active
“Passive” tags have no battery and "broadcast" their data only when energized by a reader. That means they must be actively polled to send information. "Active" tags are capable of broadcasting their data using their own battery power. In general, this means that the read ranges are much greater for active tags than they are for passive tags—perhaps a read range of 100 feet or more, versus 15 feet or less for most passive tags. The extra capability and read ranges of active tags, however, come with a cost; they are several times more expensive than passive tags. Today, active tags are much more likely to be used for high-value items or fixed assets such as trailers, where the cost is minimal compared to item value, and very long read ranges are required. Most traditional supply chain applications, such as the RFID-based tracking and compliance programs emerging in the consumer goods retail chain, will use the less expensive passive tags.
Frequencies
Like all wireless communications, there are a variety of frequencies or spectra through which RFID tags can communicate with readers. Again, there are trade-offs among cost, performance and application requirements. For instance, low-frequency tags are cheaper than ultra high-frequency (UHF) tags, use less power and are better able to penetrate non-metallic substances. They are ideal for scanning objects with high water content, such as fruit, at close range. UHF frequencies typically offer better range and can transfer data faster. But they use more power and are less likely to pass through some materials. UHF tags are typically best suited for use with or near wood, paper, cardboard or clothing products. Compared to low-frequency tags, UHF tags might be better for scanning boxes of goods as they pass through a bay door into a warehouse. While the tag requirements for compliance mandates may be narrowly defined, it is likely that a variety of tag types will be required to solve specific operational issues. You will want to work with a company that is very knowledgeable in tag and reader technology to appropriately identify the right mix of RFID technology for your environment and applications.
EPC Tags
EPC refers to "electronic product code," an emerging specification for RFID tags, readers and business applications first developed at the Auto-ID Center at the Massachusetts Institute of Technology. This organization has provided significant intellectual leadership toward the use and application of RFID technology. EPC represents a specific approach to item identification, including an emerging standard for the tags themselves, including both the data content of the tag and open wireless communication protocols. In a sense, the EPC movement is combining the data standards embodied in certain bar code specifications, such as the UPC or UCC-128 bar code standards, with the wireless data
communication standards that have been developed by ANSI and other groups.
3. RF Transceiver:
The RF transceiver is the source of the RF energy used to activate and power the passive RFID tags. The RF transceiver may be enclosed in the same cabinet as the reader or it may be a separate piece of equipment. When provided as a separate piece of equipment, the transceiver is commonly referred to as an RF module. The RF transceiver controls and modulates the radio frequencies that the antenna transmits and receives. The transceiver filters and amplifies the backscatter signal from a passive RFID tag.
Typical Applications for RFID
• Automatic Vehicle identification
• Inventory Management
• Work-in-Process
• Container/ Yard Management
• Document/ Jewellery tracking
• Patient Monitoring
04-02-2012, 12:39 PM
Post: #2
RE: RFID BASED ATTENDANCE [censored] SECURITY SYSTEM
to get information about the topic rfid based attendance system block diagram full report ,ppt and related topic refer the link bellow
http://www.seminarprojects.com/Thread-rf...ity-system

http://www.seminarprojects.com/Thread-rf...nce-system
01-08-2012, 01:43 PM
Post: #3
RE: RFID BASED ATTENDANCE CUM SECURITY SYSTEM
RFID based Attendance cum Security System


.docx  RFID based Attendance cum.docx (Size: 730.56 KB / Downloads: 80)

INTRODUCTION

Our final year project is RFID based Attendance cum Security System. This idea came to my mind when I saw our lecturers taking the attendance of 100s of students very hardly. We thought we can integrate the RFID based Security System with attendance system as well. That what our final year project is doing.

History of RFID:

In a very interesting article, the San Jose Mercury News tells us about Charles Walton, the man behind the radio frequency identification technology (RFID). Since his first patent about it in 1973, Walton, now 83 years old, collected about $3 million from royalties coming from his patents. Unfortunately for him, his latest patent about RFID expired in the mid-1990s. So he will not make any money from the billions of RFID tags that will appear in the years to come. But he continues to invent and his latest patent about a proximity card with incorporated PIN code protection was granted in June 2004.

What is RFID.

RFID is short for Radio Frequency Identification. Generally a RFID system consists of 2 parts. A Reader, and one or more Transponders, also known as Tags. RFID systems evolved from barcode labels as a means to automatically identify and track products and people. You will be generally familiar with RFID
systems as seen in:
• Access Control.
RFID Readers placed at entrances that require a person to pass their proximity card (RF tag) to be
"read' before the access can be made.
• Contact less Payment Systems.
RFID tags used to carry payment information. RFIDs are particular suited to electronic Toll collection
systems. Tags attached to vehicles, or carried by people transmit payment information to a fixed
reader attached to a Toll station. Payments are then routinely deducted from a users account, or
information is changed directly on the RFID tag.
• Product Tracking and Inventory Control. RFID systems are commonly used to track and record the
movement of ordinary items such as library books, clothes, factory pallets, electrical goods and numerous
items.

How do RFIDs work.

Shown below is a typical RFID system. In every RFID system the transponder Tags contain information. This information can be as little as a single binary bit , or be a large array of bits representing such things as an identity code, personal medical information, or literally any type of information that can be stored in digital binary format.

ANTENNA

The antenna emits radio signals to activate the tag and read and write data to it. Antennas are the conduits between the tag and the transceiver, which controls the system's data acquisition and communication. Antennas are available in a variety of shapes and sizes; they can be built into a door frame to receive tag data from persons or things passing through the door, or mounted on an interstate tollbooth to monitor traffic passing by on a freeway. The electromagnetic field produced by an antenna can be constantly present when multiple tags are expected continually. If constant interrogation is not required, a sensor device can activate the field.
Often the antenna is packaged with the transceiver and decoder to become a reader (a.k.a. interrogator), which can be configured either as a handheld or a fixed-mount device. The reader emits radio waves in ranges of anywhere from one inch to 100 feet or more, depending upon its power output and the radio frequency used. When an RFID tag passes through the electromagnetic zone, it detects the reader's activation signal. The reader decodes the data encoded in the tag's integrated circuit (silicon chip) and the data is passed to the host computer for processing.

TAGS (Transponders)

An RFID tag is comprised of a microchip containing identifying information and an antenna that transmits this data wirelessly to a reader. At its most basic, the chip will contain a serialized identifier, or license plate number, that uniquely identifies that item,
similar to the way many bar codes are used today. A key difference, however is that RFID tags have a higher data capacity than their bar code counterparts. This increases the options for the type of information that can be encoded on the tag, including the manufacturer, batch or lot number, weight, ownership, destination and history (such as the temperature range to which an item has been exposed). In fact, an unlimited list of other types of information can be stored on RFID tags, depending on application needs. An RFID tag can be placed on individual items, cases or pallets for identification purposes, as well as on fixed assets such as trailers, containers, totes, etc.

POWER SUPPLY

In alternating current the electron flow is alternate, i.e. the electron flow increases to maximum in one direction, decreases back to zero. It then increases in the other direction and then decreases to zero again. Direct current flows in one direction only. Rectifier converts alternating current to flow in one direction only. When the anode of the diode is positive with respect to its cathode, it is forward biased, allowing current to flow. But when its anode is negative with respect to the cathode, it is reverse biased and does not allow current to flow. This unidirectional property of the diode is useful for rectification. A single diode arranged back-to-back might allow the electrons to flow during positive half cycles only and suppress the negative half cycles. Double diodes arranged back-to-back might act as full wave rectifiers as they may allow the electron flow during both positive and negative half cycles. Four diodes can be arranged to make a full wave bridge rectifier. Different types of filter circuits are used to smooth out the pulsations in amplitude of the output voltage from a rectifier. The property of capacitor to oppose any change in the voltage applied across them by storing energy in the electric field of the capacitor and of inductors to oppose any change in the current flowing through them by storing energy in the magnetic field of coil may be utilized. To remove pulsation of the direct current obtained from the rectifier, different types of combination of capacitor, inductors and resistors may be also be used to increase to action of filtering.

NEED OF POWER SUPPLY

Perhaps all of you are aware that a ‘power supply’ is a primary requirement for the ‘Test Bench’ of a home experimenter’s mini lab. A battery eliminator can eliminate or replace the batteries of solid-state electronic equipment and the equipment thus can be operated by 230v A.C. mains instead of the batteries or dry cells. Nowadays, the use of commercial battery eliminator or power supply unit has become increasingly popular as power source for household appliances like transreceivers, record player, cassette players, digital clock etc.

THEORY

USE OF DIODES IN RECTIFIERS:

Electric energy is available in homes and industries in India, in the form of alternating voltage. The supply has a voltage of 220V (rms) at a frequency of 50 Hz. In the USA, it is 110V at 60 Hz. For the operation of most of the devices in electronic equipment, a dc voltage is needed. For instance, a transistor radio requires a dc supply for its operation. Usually, this supply is provided by dry cells. But sometime we use a battery eliminator in place of dry cells. The battery eliminator converts the ac voltage into dc voltage and thus eliminates the need for dry cells. Nowadays, almost all-electronic equipment includes a circuit that converts ac voltage of mains supply into dc voltage. This part of the equipment is called Power Supply. In general, at the input of the power supply, there is a power transformer. It is followed by a diode circuit called Rectifier. The output of the rectifier goes to a smoothing filter, and then to a voltage regulator circuit. The rectifier circuit is the heart of a power supply
24-02-2013, 05:54 PM
Post: #4
RE: RFID BASED ATTENDANCE CUM SECURITY SYSTEM
Quite insightful post. Never thought that it was this simple after all. I had spent a great deal of my time looking for someone to explain this topic clearly and you?re the only one that ever did that. Kudos to you! Keep it up
25-02-2013, 10:14 AM
Post: #5
RE: RFID BASED ATTENDANCE CUM SECURITY SYSTEM
to get information about the topic "RFID BASED ATTENDANCE CUM SECURITY SYSTEM" full report ppt and related topic refer the link bellow


http://seminarprojects.com/Thread-rfid-b...ull-report

http://seminarprojects.com/Thread-rfid-b...nce-system

http://seminarprojects.com/Thread-rfid-b...ing-system

http://seminarprojects.com/Thread-rfid-b...tem?page=3
Rating RFID BASED ATTENDANCE CUM SECURITY SYSTEM Options
Share RFID BASED ATTENDANCE CUM SECURITY SYSTEM To Your Friends :- Seminar Topics Bookmark
Post Reply 

Marked Categories : what is rfid, rfid based attandance cum security system, rfid based attendance system source code program, abstract of rfid based attendance system, rfid based security system ppt, rfid based classroom attendance system ppt, rfid atendance projects for enginering, rfid based attendance system projects, ppt rfid based attendence system and security system, applications of rfid based security system, rfid attendance system background, rfid based attandance security system pdf, rfid based attendance tracking system project software requirement specification, ppt on rfid based attendance tracking system, rfid based seminar, rfid based attendance system ppt,

[-]
Quick Reply
Message
Type your reply to this message here.


Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
  A PARKING GUIDANCE AND INFORMATION SYSTEM BASED ON WIRELESS SENSOR NETWORK project maker 0 31 26-07-2014 04:25 PM
Last Post: project maker
  EMBEDDED SYSTEM’s USING PIC-16F877A MICROCONTROLLER project maker 0 40 26-07-2014 03:35 PM
Last Post: project maker
  Automatic traffic control system seminar code 0 54 26-07-2014 12:22 PM
Last Post: seminar code
  mployment of scada system in water purification and transmission system seminar code 0 23 26-07-2014 10:11 AM
Last Post: seminar code
  Implementation of power system security and reliability considering risk under enviro seminar code 0 77 24-07-2014 04:33 PM
Last Post: seminar code
  POWER CONSERVATION BASED CONVEYOR BELT SYSTEM seminar code 0 99 22-07-2014 03:32 PM
Last Post: seminar code
  GSM based Parents tracking of the student attendance in college seminar ideas 20 12,665 21-07-2014 04:56 PM
Last Post: Guest
  Matlab Based DIGITAL IMAGE PROCESSING PROJECTS Ideas electronics seminars 36 102,594 21-07-2014 11:06 AM
Last Post: mkaasees
  plc based projects electronics seminars 15 62,066 21-07-2014 10:09 AM
Last Post: mkaasees
  CELL PHONE BASED VOTING MACHINE seminar code 0 161 16-07-2014 04:38 PM
Last Post: seminar code
This Page May Contain What is RFID BASED ATTENDANCE CUM SECURITY SYSTEM And Latest Information/News About RFID BASED ATTENDANCE CUM SECURITY SYSTEM,If Not ...Use Search to get more info about RFID BASED ATTENDANCE CUM SECURITY SYSTEM Or Ask Here

Options: